Solutions:  OCR Core Mathematics C1

January 2007
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	(ii)
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Write 32 as 
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We then get:  
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	3 (i)
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Expand out brackets:
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Add 15:
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Divide by 3:
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	(ii)
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This is a simple quadratic inequality.

Rearrange to make RHS equal to 0:
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Divide through by 5:
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Now consider the equivalent quadratic equation:  

[image: image13.wmf]  

x

2

-

16

=

0


This can be factorised (difference of squares):
(x + 4)(x – 4) = 0

So the solutions are:




x = -4 or x = 4.

[image: image1.wmf]  

5

2

-

3

=

5

2

-

3

´

2

+

3

2

+

3

=

10

+

5

3

4

+

2

3

-

2

3

-

3

=

10

+

5

3

1

=

10

+

5

3


To get the solutions for the inequality, consider the graph of y = x2 – 16:

We see x > 4  or  x < -4.

	
	


	4 
	The equation 
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 is a quadratic equation in disguise.

Use the substitution 
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 .  The equation becomes:   
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This factorises: 
(y + 5)(y – 2) = 0

So the solutions are  y = -5  or y = 2.

To get the solutions for x, we use x = y3:  i.e.  x = (-5)3 = -125   or  x = 23 = 8.



	
	

	5 (i)
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The graph for y = -f(x) is obtained by reflecting in the x-axis.



	(ii)
	The transformation which takes the graph to y = 3f(x) is a stretch scale factor 3 in the y-direction.  So the coordinates of Q are (1, 3).



	(iii)
	The transformation which maps the graph to y = f(x + 2) is a translation 2 units to the left.



	
	

	6 (i)
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Therefore,
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	(ii)
	The equation of the line of symmetry is x = 6.  (This is taken from the bracket)



	(iii)
	The equation of the tangent at the minimum point is y = 8  (This is because the minimum point has coordinates (6, 8).



	
	


	7 (i)
	If  y = 5x + 3,  then 
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	(ii)
	If 
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  (write as a negative power),  then  
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Rule:  Bring down the old power and subtract 1 from the power to get the new power.



	(iii)
	First expand out the brackets:  
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Then differentiate to get:   
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	8 (i)
	The steps to find the coordinates of the stationary points are:

1) Differentiate the curve to get 
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;

2) Solve the equation 
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=0 in order to get the x-coordinates of the stationary points;

3) Find the y-coordinates using the equation of the curve.

Here,  
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Therefore we need to solve the equation  
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To make this equation easier to solve we could first change the signs:  
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And then we could divide through by 3:
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This then factorises as:

(x + 3)(x – 1) = 0


So there are stationary points at x = -3  or  x = 1.

We can find the y-coordinates of these points using the formula for the equation of the curve:
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When x = 1,  y = 27 + 9 – 3 – 1 = 32

When x = -3,  y = 27 – 27 – 27 + 27 = 0.

So the stationary points have coordinates  (-3, 0) and (1, 32).



	(ii)
	To decide whether the stationary points are maximum or minimum points we follow these steps:

1) Find the second derivative 
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2) Calculate the value of the second derivative at each of the stationary points

3) If 
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 > 0, then it is a minimum point.

If 
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Here, 
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When x = 1, 
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  so a maximum point.

When x = -3, 
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  so a minimum point.



	(iii)
	To decide where the curve is increasing, it is helpful to use the coordinates of the stationary points to help us to sketch the curve:

 We see that it is increasing for 

-3 < x < 1.

	
	

	9 (i)
	Parallel lines have the same gradient.

The line y = 4x – 5 has gradient 4.

So a parallel line also has gradient 4.

The equation of a line with gradient m passing through the point (a, b) is
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As our line must pass through the point (2, 7) its equation must be:
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i.e.
y – 7 = 4x – 8

i.e.
y = 4x – 1.



	(ii)
	You can calculate the distance between two points  EITHER by sketching a diagram and using Pythagoras’ theorem  OR by using the following result:

The distance between the points 
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If we use this formula here, the distance between A(2, 7) and B(-1, -2) is:
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This can be simplified to make 
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	(iii)
	The gradient of AB is  
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The midpoint of AB is (0.5, 2.5)

The gradient of a perpendicular line is 
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  (i.e. the negative reciprocal).

So the equation of a perpendicular line is:  
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Multiply by 6:  
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i.e.




6y – 15 = -2x + 1

The equation therefore is

2x + 6y -16 = 0

Or




x + 3y – 8 = 0.

	
	

	10 (i)
	The circle has equation 
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To find the coordinates of the centre and the value of the radius, we need to rewrite the equation in the form  
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We do this using completing the square:
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The equation of the circle therefore is:
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[image: image52.wmf]  

(

x

+

1

)

2

+

(

y

-

2

)

2

=

13


The circle has centre (-1, 2) and radius √13.



	(ii)
	Substitute the coordinates (-3, k) into either equation of the circle.

The algebra is easier if we substitute into 
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We get:
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Square rooting both sides:
k – 2 = ±3

So the solutions are  k = 5  or  k = -1.

As k < 0,  the only solution is k = -1.



	(iii)
	The equation of the line is x + y = 6  OR  y = 6 – x.

If we substitute this into the equation of the circle 
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Expanding out the brackets gives:
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Simplifying:
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Divide by 2:
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This factorises as (x – 1)(x – 2) = 0   so the solutions are x = 1,  x = 2.

When x = 1,  y = 5

When x = 2,  y = 4

Therefore the coordinates of the points of intersection are (1, 5),  (2, 4).
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