	INTRODUCTION TO DIFF. EQUATIONS

Example 1:

Solve 
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Solution: We first separate out the variables:
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Inserting integral signs we get:
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Integrating both sides:  
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So:  
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Example 2:

Solve 
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Solution:  Separate out the variables:
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Put in integral signs:  
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Therefore:  
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Take exponentials: 
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So  
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The solution is a whole family of solution curves.
	A differential equation is an equation that contains derivatives.   In C4, you need to be able to solve differential equations for which the variables can be separated out.  You need to get all the x terms on one side and all the y terms onto the opposite side, i.e. to the form:
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	FINDING A PARTICULAR SOLUTION

Example:  Solve the differential equation 
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where x = 2 when y = 2, giving y as a function of x.

Solution:  Separate out the variables:  
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Insert integral signs:  
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We need to use partial fractions to integrate the LHS:
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So:  
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Put y = 3:    1 = 3B    So B = 1/3

Put y = 0:    1 = 3A    So A = 1/3

So:   
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So 
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But,  
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So the overall solution to the differential equation is
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So:  
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This rearranges to give:  
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	FORMING DIFFERENTIAL EQUATIONS
A hemispherical bowl of radius a is full of water.  At time t = 0 water starts running out of a hole in the bottom of the bowl so that the depth of water in the bowl at time t is x.  The rate at which the volume of water is decreasing is proportional to x.  Given that the volume of water in the bowl when the depth is x is 
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, show that there is a positive constant k such that 
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Solution:  The question says that 
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Therefore:  
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But  
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Since 
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Note:  This equation could then be solved by separating out the variables!!
	




















Negative as volume is decreasing





Rate of increase of volume
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