Further Pure 3: Complex Numbers
Past Examination Questions

	1.
	In this question, z denotes the complex number 
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(i) Write down z² and z³ in polar form.

(ii) The points in an Argand diagram which represent the numbers 1, 1 + z, 
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 are denoted by A, B, C and D respectively.  Sketch a diagram to show these points, and join AB, BC and CD.

(iii) Sn denotes the sum of the series 
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(iv) You are given that S6n converges to S as n → ∞.  Write down the value of S.
	(2)

(2)

(5)

(1)

	
	OCR P6 January 2005
	

	
	
	

	2.
	Find the cube roots of 1 + 2i, giving your answers, to 3 significant figures, in the form 
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, where r > 0 and 
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	3.
	(i)  
Use de Moivre’s theorem to prove that 
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(ii)
Hence show that one of the roots of the equation 
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express the other roots in trigonometrical form.

(iii)
Deduce that 
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	4.
	(i)  
Write down the modulus and argument of 
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(ii)
Given that z = 
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, express zn in polar form.  Sketch an Argand diagram, and 
mark and label the points corresponding to n = -2, -1, 1 and 3.
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	5.
	(i)
Use de Moivre’s theorem to show that 
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(ii)
Hence show that 
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 is a solution of the equation 
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and find the other solutions in trigonometrical form.
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	6.
	(a)
Find the six roots of the equation z6 = 1, giving your answers in the form 
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(b)
It is given that 
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(i)
Show that 
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(ii)
Show that 
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(iii)
Show that 
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(iv)
Given that z = cotθ – i, show that z + 2i = zw2.

(c)
(i)
Explain why the equation 
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has five roots.


(ii)
Find the five roots of the equation
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giving your answers in the form a + ib.
	(3)

(2)

(2)

(3)

(2)

(1)

(4)

	
	AQA FP2 June 2006
	

	
	
	

	7.
	It is given that 
[image: image27.wmf]i

ze

q

=

.
(a)
(i)
Show that
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(ii) Find a similar expression for 
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(iii) Hence show that
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(b)
Hence solve the quartic equation
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giving the roots in the form a + ib.
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	8.
	(a)
Express the complex numbers 
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(b)
Solve the equation 
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giving each answer in the form 
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	9.
	Use de Moivre’s theorem to prove that
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By considering the equation 
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	10.
	Use de Moivre’s theorem to show that 
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	11.
	Use de Moivre’s theorem to show that 


[image: image42.wmf]4235

sin5cossincossinsin

abc

qqqqqq

=++


where a, b and c are integers to be determined.

Hence show that 
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By means of the substitution x = 2cosθ, find, in trigonometric form, the roots of the equation
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Hence, or otherwise, show that 
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	12.
	(i)
Find the exact modulus and argument of the complex number 
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(ii)
Hence obtain the roots of the equation
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gving your answers in the form 
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	13.
	Express 
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